
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 289 (2006) 830–850
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Damage detection in discrete vibrating systems

Michele Dilena, Antonino Morassi�

Dipartimento di Georisorse e Territorio, Università degli Studi di Udine, Italy
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Abstract

This paper deals with the identification of a single defect in a discrete spring-mass or beam-like system by
measurements of damage-induced shifts in resonance frequencies and antiresonance frequencies. For
initially uniform discrete systems, it is shown how the measurement of an appropriate set of frequencies and
antiresonances permits unique identification of the damage. The theoretical results are confirmed by
comparison with numerical and experimental tests.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the identification of localized damage in discrete vibrating
systems, such as spring-mass or beam-like systems, by a minimal number of frequency
measurements.
Discrete vibrating systems are quite common structural mechanics. They originate, for example,

when finite element models are used to approximate the dynamic behavior of continuous systems
(see Ref. [1]). There are other situations, which are important both for the civil and mechanical
engineering field, in which real vibrating structures can be accurately modelled as discrete systems.
To give few significant examples of this kind, multi-story buildings under seismic base excitation
or rotary shafts in turbines can be modelled as discrete spring-mass systems (see Ref. [2]).
Moreover, beam-like systems with massless rigid elements connected themselves by elastic joints
are largely employed to model the dynamic behavior of mechanical manipulators in robotics.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Inverse vibration problems for these classes of discrete systems have been extensively
investigated since long ago (see Ref. [3] for a complete state-of-the-art and recent results). In
most of these studies, researchers focused on finding sufficient conditions to reconstruct uniquely
the whole collection of the stiffness and inertia coefficients of the system. As a typical example of
this kind of results, it is recalled that a spring-mass system consisting of N masses and stiffnesses
can be uniquely reconstruct when two full spectra, corresponding to free–free and fixed–free
boundary conditions, are known. Practical situations are quite different since in most cases only
the first few frequencies can be determined accurately in experiments and, therefore, data are
insufficient to guarantee uniqueness of the identification.
Damage detection problems have some special features. In fact, in most problems of structural

diagnostics damage occurs at a limited number of positions and, therefore, when the undamaged
system is completely known, only few parameters need to be determined. Such a peculiarity in
damage detection has been observed more or less explicitly elsewhere in the literature and has
been recently emphasized in Ref. [4].
Most of the available diagnostic techniques for vibrating systems are formulated as an

optimality criterion, where the stiffness distribution of a chosen reference configuration of the
system is updated so that the first few frequencies closely match the measured ones at a certain
level of deterioration, see, for instance, Refs. [5–7]. In a recent paper, Zhu and Wu [8] proposed a
method based on the sensitivity analysis for predicting both the locations and magnitude of
damage at one or more sites in large mono-coupled periodic systems, using measured changes in
the natural frequencies. On the one hand, these optimization techniques have the advantage of
allowing for investigation of quite general classes of problems. On the other hand, the lack of
satisfactory framework of general properties give rise to several indeterminacy, which, in some
cases, may obstruct application to practical problems, see, for example, Refs. [9–11].
Here, following a line of research initiated in Refs. [12,13], and developed subsequently in

Refs. [14–16], the damage detection problem in discrete systems, such as spring-mass or
beam-like systems, is investigated from a different point of view. The attention is focussed on
finding conditions which allow for a rigorous formulation of the damage detection problem
from minimal frequency measurements. Despite very extensive literature on inverse problems
for discrete systems, both from the mathematical and applied point of view, few results of this
kind seem to be available. The present paper deals with the problem of detecting a localized
damage in initially uniform discrete spring-mass or beam-like systems. In particular, when a
single localized damage is present, a situation simple but quite common in practice, the
unknown damage parameters reduce to the stiffness variation and the index corresponding to the
damaged spring element. Therefore, it is reasonable to investigate the extent of which the
measurement of the damage-induced changes in a pair of frequencies can be useful for identifying
the damage.
In order to illustrate the present results, for the sake of simplicity, reference is made to a spring-

mass system under free–free boundary conditions. It was found that knowledge of the ratio
between the variations of the first two natural frequencies uniquely determines the damage (except
for symmetrical positions). Furthermore, the measurement of the variation of the first resonant
frequency and the first antiresonance of the point frequency response function corresponding to
one end of the spring-mass system, allows for discharging the spurious damage location caused by
structural symmetry. As for cantilever or fixed-fixed spring mass systems, it is borne out that by
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simultaneously employing natural frequencies and antiresonant frequencies, it is possible to
significantly reduce the non-uniqueness of the damage location problem.
The proposed identification technique is essentially based on the well-known explicit expression for

the damage sensitivity of eigenfrequencies and represents the discrete version of the approach used in
Refs. [13,16] to detect damage in continuous beams. Part of the results above are also valid for
initially uniform beam-like discrete systems in bending under various set of boundary conditions.
The prediction of the theory and reliability of the diagnostic technique were checked on the

basis of results of several pseudo-experimental and experimental dynamic tests performed on
damaged systems. Numerical results agree well with analytical predictions.
The plan of the present paper is as follows. Frequency sensitivity to damage and the diagnostic

method are illustrated in Section 2. Section 3 is devoted to present theoretical results for initially
uniform discrete systems. Numerical applications are discussed in Section 4.
2. Eigenvalue sensitivity to damage and the diagnostic method

2.1. Spring-mass systems

Consider a free–free spring-mass system in an undamaged state consisting of a chain of N

masses mj, j ¼ 1; . . . ;N, connected consecutively by linear elastic springs of stiffness kj, j ¼
1; . . . ;N � 1 (see Fig. 1).
The spatial variation of the infinitesimal free vibrations about an equilibrium position of the

undamaged system is governed by the discrete eigenvalue problem

Ku ¼ lMu, (1)

where u ¼ ðu1; . . . ; uNÞ, ua0, is the normal mode and
ffiffiffi
l
p

is the associated natural frequency.
Throughout this paper, the system is assumed to have no material damping. The N �N
symmetrical matrices K andM are the stiffness and the inertia, or mass, matrices of the system.M
is diagonal with mass values mj on the places ð j; jÞ, e.g.M ¼ diagðm1; . . . ;mNÞ. K is the tridiagonal
positive semi-definite matrix given by

K ¼

k1 �k1 0 � � � 0 0

�k1 k1 þ k2 �k2 � � � 0 0

0 �k2 k2 þ k3 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � kN�2 þ kN�1 �kN�1

0 0 0 � � � �kN�1 kN�1

0BBBBBBBBB@

1CCCCCCCCCA
. (2)
m
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m
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k i k
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Fig. 1. Spring-mass system.
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Eq. (1) has N simple eigenvalues satisfying 0 ¼ l0ol1o � � �olN�1, and N corresponding
eigenvectors uðjÞ, j ¼ 0; . . . ;N � 1. The eigenvectors fuðjÞgN�1j¼0 form an orthogonal basis for RN ,
with respect to the scalar product induced by the mass matrixM, and they can be chosen such that
MuðjÞ � uðkÞ ¼ djk, djk being the Kronecker symbol.
Suppose that a structural damage consisting of a reduction Dki, �kioDkio0, of the spring

stiffness occurs, say, at the ith elastic spring connecting the ith and ði þ 1Þth degree of freedom.
Therefore, the eigenvalue problem for the damaged system is the following:eKeu ¼ elMeu, (3)

where

eK� K ¼

0 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

.
0

0 � � � Dki �Dki � � � 0

0 � � � �Dki Dki � � � 0

..

. . .
. ..

. ..
. . .

.
0

0 � � � 0 0 � � � 0

0BBBBBBBBBB@

1CCCCCCCCCCA
i

iþ1

i i þ 1

(4)

Eq. (3) has also N real simple eigenvalues satisfying 0 ¼ el0oel1o � � �oelN�1, and N corresponding
eigenvectors euj, j ¼ 0; 1; . . . ;N � 1. The variational formulation of the eigenvalue problem (1)
shows that eigenvalues are decreasing functions of ki, that is

0 ¼ el0 ¼ l0; eljplj for j ¼ 1; . . . ;N � 1. (5)

Moreover, by monotonicity principle, the following interlacing result holds:

lj�1peljplj; j ¼ 1; . . . ;N � 1. (6)

If the damage is small, namely jDkij5ki, the first-order variation of the eigenvalues with respect to
Dki may be found by differentiating Eq. (1) with respect to the parameter ki. PuttingeljðeKÞ ¼ ljðKÞ þ dlj; j ¼ 1; . . . ;N � 1, (7)

and by taking into account the mass-normalization condition of eigenvectors, it can be shown
that, neglecting terms of higher order on jDkij,

dlj ¼
qK
qki

uðjÞ � uðjÞ
� �

Dki, (8)

with i and j, j ¼ 1; . . . ;N � 1, fixed indexes, see, for example, Ref. [17]. More explicitly, Eq. (8)
gives

dlj ¼ Dkiðu
ðjÞ
iþ1 � u

ðjÞ
i Þ

2. (9)

That is, the change in a natural frequency produced by a localized damage may be expressed as
the product of two terms, the first of which is proportional to the severity and the second depends
only on the location of the damage. This second term is proportional to the square of the axial
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force N
ðjÞ
i ¼ kiðu

ðjÞ
iþ1 � u

ðjÞ
i Þ in the jth mode shape of the undamaged system, between the 2 dof

adjacent to the damaged spring, see Ref. [13] for the analogue continuous case.
Eq. (9) has an important consequence; the ratios of the change in two different natural

frequencies depend only on the damage location i, not on the damage severity Dki, see also
Refs. [18,5]. That is, for dlko0,

dlj

dlk

¼
ðu
ðjÞ
iþ1 � u

ðjÞ
i Þ

2

ðu
ðkÞ
iþ1 � u

ðkÞ
i Þ

2
� f ðiÞ, (10)

which can be considered as an equation to be solved with respect to the integer variable i, where i

belongs to the set f1; . . . ;N � 1g.
From the practical point of view, once the free vibration problem related to the undamaged system is

solved, the behavior of the function f ðiÞ is known and therefore, from a measured value of the ratio
dlj=dlk, it is possible via numerical methods to estimate the solutions of Eq. (10). For example, one can
compute the right-hand side of Eq. (10) for each integer i, i ¼ 1; . . . ;N � 1, and then find those values
of the index which give the value closest to the left-hand side. This procedure gives a good estimation of
the possible damage positions which correspond to the measured ratio dlj=dlk. In Section 3.1 the
diagnostic problem for the simple but very common case of initially uniform spring-mass systems,
e.g. systems for which kj ¼ k and mj ¼ m for every j, will be considered and studied in detail.
Till now only free–free boundary conditions have been considered. It is worth noticing that the

present method can be adapted in such a way as to take general boundary conditions into
account. Two important cases will be considered in the following: cantilever (C), when the first
mass m1 is fixed ðu1 ¼ 0Þ and supported (S), when the first mass and the last Nth mass are fixed
ðu1 ¼ uN ¼ 0Þ. For these cases one has

ðCÞ M ¼ diagðm2; . . . ;mNÞ,

K ¼

k1 þ k2 �k2 0 � � � 0 0

�k2 k2 þ k3 �k3 � � � 0 0

0 �k3 k3 þ k4 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � kN�2 þ kN�1 �kN�1

0 0 0 � � � �kN�1 kN�1

0BBBBBBBBB@

1CCCCCCCCCA
; (11)

ðSÞ M ¼ diagðm2; . . . ;mN�1Þ,

K ¼

k1 þ k2 �k2 0 � � � 0 0

�k2 k2 þ k3 �k3 � � � 0 0

0 �k3 k3 þ k4 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � kN�3 þ kN�2 �kN�2

0 0 0 � � � �kN�2 kN�2 þ kN�1

0BBBBBBBBB@

1CCCCCCCCCA
. (12)
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2.2. Beam-like systems

Consider the discrete system consisting of ðN � 1Þmasses fmjg
N�1
j¼1 linked by massless rigid beam

elements, of equal length l, which are themselves connected by ðN � 1Þ rotational elastic springs of
stiffness fkjg

N�1
j¼1 . Suppose that the left and the right ends of the whole system are simply supported

(see Fig. 2).
The free undamped infinitesimal vibrations of the system are governed by a discrete eigenvalue

problem of the kind (1), where the ðN � 1Þ � ðN � 1Þ stiffness, K, and inertia, M, symmetrical
matrices are given by

M ¼ diagðm1; . . . ;mN�1Þ,

K ¼
1

l2

4k1 þ k2 �2ðk1 þ k2Þ k2 0 � � � 0

�2ðk1 þ k2Þ k1 þ 4k2 þ k3 �2ðk2 þ k3Þ k3 � � � 0

k2 �2ðk2 þ k3Þ k2 þ 4k3 þ k4 �2ðk3 þ k4Þ � � � 0

0 k3 �2ðk3 þ k4Þ k3 þ 4k4 þ k5 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � kN�2 þ 4kN�1

0BBBBBBBBBB@

1CCCCCCCCCCA
.

(13)

Eq. (1), with M and K as in Eq. (13), has ðN � 1Þ real simple eigenvalues 0ol1o � � �olN�1 and
ðN � 1Þ corresponding eigenvectors uðjÞ, j ¼ 1; . . . ;N � 1, with MuðjÞ � uðkÞ ¼ djk.
Suppose that a structural damage corresponding to a reduction Dki, �kioDkio0, of the

rotational spring stiffness occurs, say, at the ith elastic spring connecting the ith and the ði þ 1Þth
rigid beam element. If the damage is small, on proceeding as it was made in Section 2.1 for the
spring-mass system, the first-order variation dlj of the jth eigenvalue with respect to Dki can be
evaluated from Eq. (8). By considering expression (13) for K, dlj is given by

dlj ¼ Dki

u
ðjÞ
i�1 � 2u

ðjÞ
i þ u

ðjÞ
iþ1

l

 !2

. (14)

From Eq. (14), the first-order change dlj in lj may be expressed as the product of the severity of
the damage, Dki, and a second term which is proportional to the square of the bending moment
M
ðjÞ
i ¼ kiððu

ðjÞ
i�1 � 2u

ðjÞ
i þ u

ðjÞ
iþ1Þ=lÞ in the jth mode shape of the undamaged system, evaluated at the

damaged spring, see Ref. [13] for the analogue continuous case.
m
1

m
i-1

m
i

m
i+1

m
N-1

k
1

k
i-1

k
i

k
N-1

k
i+1

l l l l

Fig. 2. Simply supported beam-like system.
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As before, the ratios of the change in two different natural frequencies depend only on the
damage location i, not on the damage severity. For dlko0 one has

dlj

dlk

¼
ðu
ðjÞ
i�1 � 2u

ðjÞ
i þ u

ðjÞ
iþ1Þ

2

ðu
ðkÞ
i�1 � 2u

ðkÞ
i þ u

ðkÞ
iþ1Þ

2
� gðiÞ. (15)

Eq. (15) can be considered as an equation to be solved, by numerical methods, for example, with
respect to the damage position variable i, where i belongs to the set of integer numbers
f1; . . . ;N � 1g.
As it was remarked at the end of the previous section, the present method of damage detection

can be adapted to consider general boundary conditions. In particular, the free–free boundary
conditions case (F–F) will be considered in detail in Section 4. In this case, the ends of the beam
shown in Fig. 2 are unconstrained and two point masses m0, mN are present at the left end of the
first and at the right end of the ðN � 1Þth beam element, respectively.
Finally, it should be observed that the assumption of small damage restricts the range of

application of the proposed diagnostic method to damaged systems that are a perturbation of the
undamaged ones. However, this is not a severe limitation, because in most practical situations it is
important to be able to detect damage as soon as it arises.
3. Damage detection in initially uniform discrete systems

In Section 2 it was shown how the problem of detecting a localized damage in a spring-mass or
beam-like discrete systems can be formulated on the basis of the knowledge of the damage
induced shifts in a pair of natural frequencies. In the present section it will be shown that there are
certain cases concerning initially uniform systems, a situation quite common in practice and
important for several engineering applications, in which the inverse diagnostic problem can be
explicitly solved. In particular, it will be shown how the effects of the non-uniqueness of the
solution of the damage location problem may be considerably reduced by means of a careful
choice of the frequency data.

3.1. Damage detection in spring-mass systems

In this part, spring-mass discrete systems as those considered in Section 2.1, with uniform
inertia and stiffness coefficients in the undamaged configuration, will be investigated, e.g. mj ¼ m
and kj ¼ k for every value of the index j.
To begin the analysis, the free–free (F) spring-mass system shown in Fig. 1, with a damage at

the ith elastic spring, will be considered. The eigenpairs flF
j ; u

FðjÞgN�1j¼0 of the undamaged system
can be explicitly evaluated and they are given by

lF
j ¼ 4

k

m
sin2

WF
j

2
; u

F ðjÞ
i ¼

1ffiffiffiffiffiffiffiffi
cF ðjÞ
p cos

WF
j

2
ð2i � 1Þ; WF

j ¼
jp
N

, (16)

j ¼ 0; 1; . . . ;N � 1, i ¼ 1; . . . ;N, where the positive constant cF ðjÞ, only depending on j, N and m,
has been chosen such that the normalization condition MuðjÞ � uðjÞ ¼ 1 is satisfied.
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By substituting expression (16) of the vibration mode into Eq. (9), after some straightforward
computations and a rearrangement of the terms, we can find

dlF
j ¼ 4

Dki

cFðjÞ
sin2j

p
2N

sin2jp
i

N
, (17)

j ¼ 0; . . . ;N � 1. Note that the fundamental 0th (rigid) mode is always insensitive to damage. By
Eq. (10) evaluated for j ¼ 2 and k ¼ 1, and by using standard trigonometric identities we obtain

dlF
2

dlF
1

¼ 4
cF ð1Þ

cF ð2Þ

sin2p=N

sin2p=2N
cos2p

i

N
, (18)

i ¼ 1; . . . ;N � 1. Replacing i=N with the continuous variable s, s 2 ð0; 1Þ, we can solve explicitly
Eq. (18) for the damaged location s and we obtain

s1 ¼
1

2p
arccos

1

2

cFð2Þ

cFð1Þ

sin2ðp=2NÞ

sin2ðp=NÞ

dlF
2

dlF
1

� 1

 !
(19)

and the corresponding symmetrical solution

s2 ¼ 1� s1. (20)

Therefore, the position of the ith damaged spring can be estimated as the integer part of the
number obtained by multiplying s1 or s2 and N, i.e.

i1 ¼ ½s1N�; i2 ¼ ½ð1� s1ÞN�. (21)

The above analysis shows that the measurement of the changes in the first and second (elastic)
natural frequencies is sufficient to localize the damage, except for symmetrical positions. To
complete the identification, the severity of the damage Dki can be estimated via Eq. (17).
The non-uniqueness of the damage location due to structural symmetry for the (F) spring-mass

system can be eliminated by a combined use of natural frequency and antiresonant frequency
measurements. As it is well known, antiresonances correspond to zeros of frequency response
functions (frf) Hklð

ffiffiffi
l
p
Þ, where k and l denote the indexes of the response and excitation degree of

freedom, respectively. When k ¼ l, the zeros of the frf Hkkð
ffiffiffi
l
p
Þ are the natural frequencies of a

spring-mass system in which the displacement at the kth degree of freedom is hindered. Therefore,
under the assumption of small damage, on proceeding as in Section 2 and with the same notation,
the first-order variation of the (square of the) jth antiresonance of the point frf Hkkð

ffiffiffi
l
p
Þ with

respect to the damage severity Dki may be evaluated by Eq. (9).
Consider now the point frf H11ð

ffiffiffi
l
p
Þ. The antiresonances of H11ð

ffiffiffi
l
p
Þ are the (square roots of

the) eigenvalues of the spring-mass system (F) with left end, at the first degree of freedom, fixed,
namely the eigenvalues lC

j of the cantilever system (C) of Eq. (11). It follows that their first-order
variation with respect to the damage coincides with the first-order variation dlC

j of the eigenvalues
lC

j of the cantilever (C). The eigenpairs of the initially uniform (C) system are given by

lC
j ¼ 4

k

m
sin2

WC
j

2
; u

CðjÞ
i ¼

1ffiffiffiffiffiffiffiffiffi
cCðjÞ
p sin WC

j ði � 1Þ; WC
j ¼

2j � 1

2N � 1
p, (22)



ARTICLE IN PRESS

M. Dilena, A. Morassi / Journal of Sound and Vibration 289 (2006) 830–850838
j ¼ 1; . . . ;N � 1, i ¼ 2; . . . ;N, where cCðjÞ is a positive normalization constant depending on j, N

and the inertia coefficient m only. By Eq. (9) one has

dlC
j ¼ 4

Dki

cCðjÞ
sin2
ð2j � 1Þp
2ð2N � 1Þ

cos2
ð2j � 1Þpð2i � 1Þ

2ð2N � 1Þ
, (23)

j ¼ 1; . . . ;N � 1, and, therefore, taking dlj ¼ dlF
1 and dlk ¼ dlC

1 in Eq. (10), after some easy
calculations, it follows that

dlF
1

dlC
1

¼
cCð1Þ

cFð1Þ

sin2p=2N

sin2p=2ð2N � 1Þ

sin2pi=N

cos2ðp=2Þð2i � 1Þ=ð2N � 1Þ
, (24)

i ¼ 2; . . . ;N. The function hðiÞ ¼ sin2pi=N=cos2ðp=2Þð2i � 1Þ=ð2N � 1Þ of the integer variable i is
strictly increasing in the interval 2pipN. By proceeding as exemplified above in solving Eq. (18),
Eq. (24) can be uniquely inverted to obtain an estimate of the damage location. Therefore, it turns
out that from the knowledge of the first elastic natural frequency under boundary conditions (F)
and of the first antiresonant frequency of the point frf H11ð

ffiffiffi
l
p
Þ it is possible to localize uniquely

the damage.
The present technique can be also adapted to analyze the damage identification in a spring-mass

system under (C) boundary conditions. This case is rather important for applications, because it
describes the dynamic behavior of shear-type buildings under seismic base excitation. In
particular, it will be now examined to what extent the measurement of the first resonant frequency
of the (C) system and the first antiresonance of the point frf HNNð

ffiffiffi
l
p
Þ measured at the free upper

end is useful to localize the damage. It is worth noticing that this situation describes the dynamic
test in which an horizontal force is applied to the top floor and, at the same level, the dynamic
response is measured so to determine the point frf HNNð

ffiffiffi
l
p
Þ. Note that the required data for

damage identification are extracted only from a single frf measurement.
The antiresonances of the point frf HNNð

ffiffiffi
l
p
Þ are the (square roots of the) eigenvalues lS

j of the
supported spring-mass system (S) of Eq. (12). The normalized eigenpairs of the initially uniform
(S) system have the expression

lS
j ¼ 4

k

m
sin2

WS
j

2
; u

SðjÞ
i ¼

1ffiffiffiffiffiffiffiffi
cSðjÞ
p sin WS

j ði � 1Þ; WS
j ¼

jp
N � 1

, (25)

j ¼ 1; . . . ;N � 2, i ¼ 2; . . . ;N � 1, where cSðjÞ is a positive normalization constant depending on j,
N and the inertia coefficient m only. By substituting the expression of the fundamental vibrating
modes of the (C) and (S) systems in Eq. (10), after some calculations, we can find

dlS
1

dlC
1

¼ cðNÞ
cos2pð2i � 1Þ=ð2ðN � 1ÞÞ

cos2ðp=2Þð2i � 1Þ=ð2N � 1Þ
, (26)

where the unknown integer variable i ranges from 2 to ðN � 1Þ and the known constant cðNÞ

depends on N only. Replacing the discrete position variable ð2i � 1Þ=ð2N � 1Þ with the continuous
variable s, s 2 ð0; 1Þ, we can show that the function f ðsÞ ¼ cos2ps=cos2ðps=2Þ has the behavior
illustrated in Fig. 3.
Therefore, if dlS

1=ðcðNÞdl
C
1 Þ41 there is a unique solution of diagnostic problem and the

damage location is placed near the free end, e.g. in the interval s 2 ðs�; 1Þ, where s� ¼ 2
3
. If
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Fig. 3. Graph of the function f ðsÞ ¼ cos2ps=cos2ps=2 in the interval ½0; 1Þ.
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0odlS
1=ðcðNÞdl

C
1 Þp1 there are two distinct damage locations which correspond to the same ratio

between the first natural frequency and the first antiresonant frequency, one located in the left
part of the system, adjacent to the fixed end, the other located in the interval ð1

2
; s�Þ. Finally, if

dlS
1 ¼ 0, the damage is located at the mid-point of the system.

3.2. Damage detection in beam-like systems

The discrete model, which will be mainly investigated, is a beam-like system under supported-
supported boundary conditions as that shown in Fig. 2. Suppose that the undamaged system is
formed by N rigid beam elements of equal length l and has uniform inertia and stiffness
coefficients, e.g. mj ¼ m and kj ¼ k for every value of the index j. The normalized eigenpairs of the
system can be explicitly determined and they are given by

lS�S
j ¼ 16

k

ml2
sin4

WS
j

2
; u

S�SðjÞ
i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
cS�SðjÞ
p sin WS�S

j i; WS�S
j ¼

jp
N

, (27)

j ¼ 1; . . . ;N � 1, i ¼ 1; . . . ;N � 1, with cS�SðjÞ40 a suitable normalization constant.
Suppose that a damage occurs at the ith rotational spring connecting the ith and the ði þ 1Þth

rigid beam element. The structural damage corresponds to a reduction Dki, �kioDkio0, of the
spring stiffness. Assuming the damage small, that is jDkij5ki, the first-order variation dlS�S

j of
the jth eigenvalue with respect to Dki can be evaluated from Eq. (14). By substituting expression
(27) of the vibration mode into Eq. (14), after some straightforward calculations, we find that the
ratio (15) between the first-order variations in the second and first eigenvalue is given by

dlS�S
2

dlS�S
1

¼ cðNÞcos2p
i

N
, (28)

i ¼ 1; . . . ;N, where the known constant cðNÞ40 only depends on N. Replacing i=N with the
continuous variable s, s 2 ð0; 1Þ, we can solve explicitly Eq. (28) for the damage location s and we
obtain

s1 ¼
1

p
arccos

2

cðNÞ

dlS�S
2

dlS�S
1

� 1

 !
(29)
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and the corresponding symmetrical position

s2 ¼ 1� s1. (30)

The position of the damaged spring can be evaluated as before, by taking the integer part of the
number obtained by multiplying s1 and s2 times N, i.e. i1 ¼ ½s1N� and i2 ¼ ½ð1� s1ÞN�. Therefore,
the above analysis shows that the measurement of the changes in the first and second natural
frequencies of a (S–S) beam-like system is sufficient to localize the damage, except for symmetrical
positions. Damage identification results for different set of boundary conditions will be
considered in the next section.
4. Applications

In previous section it was shown how measurements of natural frequencies and antiresonant
frequencies may be used to assess the location as well as the severity of a localized damage in a
spring-mass system (Section 3.1) or in a beam-like system (Section 3.2). The present section is
devoted to illustrate some applications of numerical and experimental character. The proposed
diagnostic technique has been tested on several discrete systems and under different damage
scenarios. In particular, the following analysis will concern with a rotating shaft carrying six disks
(Example 1), a shear-type building (Example 2), a spring-mass system (Example 3) and a beam-
like system (Example 4). In the last two examples, discrete vibrating systems are used as finite
element approximation of the longitudinal and transversal vibrations of a continuous beam with a
single crack of increasing depth. In Examples 1 and 2, the inverse problem of damage detection is
solved using pseudo-experimental (simulated) data, that is, the frequencies are obtained by solving
numerically the direct problem in undamaged condition and in some damage state defined by two
damage parameters i, the damage location, and Dki, the damage severity. In the remaining two
cases, Examples 3 and 4, the diagnostic procedure is tested on the basis of real experimental data
coming from some dynamic tests performed on steel cracked beams.
4.1. Example 1

The system consists of six equal disks, with mass polar moment of inertia J0 ¼ 0:053 kgm2,
connected by five equal massless shafts of length L0 ¼ 0:4m and with torsional stiffness
GJ ¼ 46kNm2. The system is supported at both ends by means of frictionless sleeves in such a
way that the entire system can rotate freely as a whole (see Fig. 4).
One main case of damage among several studied is presented and discussed in detail: it is

illustrative of the main feature of the inverse problem and of the identification technique. This
case is characterized by a damage in the second shaft or, equivalently, in the torsional spring k2

connecting the second and the third disk (from the left hand side in Fig. 4). Three levels of damage
D1, D2, D3 were considered, corresponding to a reduction of the 5%, 10% and 20% of the initial
value of the torsional stiffness k2, respectively for D1, D2, D3. The corresponding average
variations of the frequencies are about 0:6%, 1:3% and 3% for D1, D2, D3, respectively (see
Table 1).
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Fig. 4. Rotating shaft with disks.

Table 1

Analytical frequencies and antiresonances (of the point frf H11ð
ffiffiffi
l
p
Þ) of the system of Fig. 4

Mode number Undamaged f undam
n

Damage D1 Damage D2 Damage D3

f dam
n

Df n% f dam
n

Df n% f dam
n

Df n%

Frequencies

0 0.00 0.00 — 0.00 — 0.00 —

1 121.29 120.49 0.7 119.62 1.4 117.56 3.1

2 234.31 232.80 0.6 231.17 1.3 227.56 2.9

3 331.37 331.37 0.0 331.37 0.0 331.37 0.0

4 405.84 403.15 0.7 400.17 1.4 393.40 3.1

5 452.66 449.98 0.6 447.61 1.1 443.72 2.0

Antiresonances

1 66.69 66.17 0.8 65.60 1.6 64.30 3.6

2 194.67 194.53 0.1 194.37 0.2 193.99 0.3

3 306.88 306.01 0.3 305.02 0.6 302.55 1.4

4 394.23 390.59 0.9 386.69 1.9 378.35 4.0

5 449.64 447.45 0.5 445.53 0.9 442.39 1.6

Undamaged configuration: k ¼ GJ=L0 ¼ 115 kNm, J0 ¼ 0:053kgm2. Damage scenarios: kdam
2 =kundam

2 ¼ 0:95; 0:90; 0:80

for damages D1, D2, D3, respectively. Frequency values f n in Hz. Df n% ¼ 100ð f undam
n � f dam

n Þ=f undam
n .
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The frequency values of the undamaged shaft and their values associated with the cases of
damage are reported in Table 1; the latter have been obtained by solving the perturbed eigenvalue
problem (3). The results of identification are presented in Tables 2 and 3. It is possible to observe
that, in the absence of errors on the data, the pair of two solutions (21) predicted by the theory for
the mathematical problem when the first two (elastic) frequencies are used, contains the real
solution of the damage problem (damage in the spring number 2) and its symmetrical counterpart
(damage in the spring number 4). The deviations from the effective severity of the damage are
negligible for all the cases considered. As it was shown in Section 3.1, the use of the first resonance
and of the first antiresonance of the frf corresponding to one end of the system, allows for a
unique localization of the damage. This theoretical result is confirmed by the numerical
applications (see Table 2).
The damage analysis have been developed in absence of errors so far, but, as it is well known,

the results of most identification techniques strictly depend on possible measurement and
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Table 2

Determination of the damage location by using the first two frequencies (Eq. (18)) and first frequency-first

antiresonance of the point frf H11ð
ffiffiffi
l
p
Þ (Eq. (24))

Data Damage D1 Damage D2 Damage D3

s1N s2N s1N s2N s1N s2N

Analysis without errors

Resonances 2.008 3.993 2.016 3.984 2.035 3.965

Res.–antires. 2.010 2.020 2.043

Analysis with errors—case (a)

Resonances 2.030 3.970 2.025 3.975 2.042 3.958

Res.–antires. No solution No solution No solution

Analysis with errors—case (b)

Resonances 1.987 4.013 2.008 3.992 2.029 3.971

Res.–antires. No solution No solution No solution

Actual damage location: spring number 2. Damage scenarios D1, D2, D3 as in Table 1. Errors on frequencies f n and

antiresonances f a
n: case (a) errðn ¼ 1Þ ¼ 2%, errðn ¼ 2Þ ¼ 2%; case (b) errðn ¼ 1Þ ¼ 2%, errðn ¼ 2Þ ¼ 4%. ErrðnÞ ¼ 1%

means that the frequency value used in the identification procedure is f exact
n ð1þ 0:01Þ.

Table 3

Determination of the damage severity by using the first two frequencies (Eq. (18)) and the first frequency-first

antiresonance of the point frf H11ð
ffiffiffi
l
p
Þ (Eq. (24))

Data Damage D1 Damage D2 Damage D3

s1N s2N s1N s2N s1N s2N

Analysis without errors

Resonances 0.95 0.95 0.89 0.89 0.76 0.76

Res.–antires. 0.95 0.89 0.76

Analysis with errors—case (a)

Resonances 0.99 0.99 0.93 0.93 0.80 0.80

Res.–antires. No solution No solution No solution

Analysis with errors—case (b)

Resonances 0.99 0.99 0.93 0.93 0.80 0.80

Res.–antires. No solution No solution No solution

Actual damage severity: kdam
2 =kundam

2 ¼ 0:95; 0:90; 0:80 for damages D1, D2, D3, respectively. Errors on frequencies f n

and antiresonances f a
n: case (a) errðn ¼ 1Þ ¼ 2%, errðn ¼ 2Þ ¼ 2%; case (b) errðn ¼ 1Þ ¼ 2%, errðn ¼ 2Þ ¼ 4%. ErrðnÞ ¼

1% means that the frequency value used in the identification procedure is f exact
n ð1þ 0:01Þ.
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modelling errors. To take the effect of errors in the experimental data into account, the previous
cases in which the data were corrupted by some noise have been considered (see Tables 2 and 3).
In general, it is possible to observe that, in the inverse problem solution, the damage detection
procedure is quite stable when resonances are used as data in identification. Conversely, the
inverse problem has no solution when antiresonance data are corrupted by some noise. The above
results suggest that the noise errors on antiresonances are amplified strongly with respect to cases
in which frequency data are used in identification. This is in agreement with the recent results
found in Ref. [16] concerning crack detection in continuous beams.
4.2. Example 2

The second example concerns a spring-mass system which models the vibrations of a shear-type
building. The proposed damage detection technique has been tested on several systems with
different number of floors. Here, for the sake of brevity, a fifth-story shear-type building will be
mainly investigated. The column masses are considered negligible in comparison with the floor
masses, which have been assumed equal to m ¼ 6� 105 kg. The shear stiffness of each story of the
undamaged system is equal to k ¼ 2� 109 N=m.
To apply the proposed procedure of damage detection, one damage scenario among several

studied will be analyzed in detail, e.g. a damage located at the first story of the building, and three
damage configurations corresponding to a reduction of 5% ðD1Þ, 10% ðD2Þ and 20% ðD3Þ of the
initial value of shear stiffness k1 will be considered. The corresponding frequency and
antiresonance (of the point frf of the last floor) variations are shown in Table 4. The results of
Table 4

Analytical frequencies and antiresonances (of the point frf HNN ð
ffiffiffi
l
p
Þ) of the shear-type building

Mode number Undam. Damage D1 Damage D2 Damage D3

f undam
n f dam

n
Df n% f dam

n
Df n% f dam

n
Df n%

Frequencies

1 2.62 2.59 0.9 2.56 1.9 2.50 4.2

2 7.63 7.58 0.8 7.51 1.6 7.38 3.4

3 12.03 11.97 0.5 11.91 1.1 11.78 2.1

4 15.46 15.42 0.3 15.38 0.5 15.31 1.0

5 17.63 17.62 0.1 17.61 0.1 17.59 0.3

Antiresonances

1 5.68 5.63 0.9 5.57 1.9 5.44 4.2

2 10.80 10.73 0.7 10.66 1.3 10.50 2.8

3 14.87 14.82 0.3 14.77 0.7 14.67 1.3

4 17.48 17.46 0.1 17.45 0.2 17.42 0.3

Undamaged configuration: story shear stiffness k ¼ 2� 109 N=m, floor mass m ¼ 6� 105 kg. Damage scenarios:

kdam
1 =kundam

1 ¼ 0:95; 0:90; 0:80 for damages D1, D2, D3, respectively. Frequency values f n in Hz. Df n% ¼

100ð f undam
n � f dam

n Þ=f undam
n .
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Table 5

Determination of the damage location by using the first two frequencies and first frequency-first antiresonance of the

point frf HNN ð
ffiffiffi
l
p
Þ (Eq. (26))

Data Damage D1 Damage D2 Damage D3

s1N s2N s1N s2N s1N s2N

Analysis without errors

Resonances 1.016 3.174 1.034 3.169 1.071 3.158

Res.–antires. 1.021 3.906 1.042 3.903 1.089 3.897

Analysis with errors—case (a)

Resonances 1.002 3.178 1.020 3.173 1.059 3.162

Res.–antires. 0.991 3.910 1.014 3.907 1.063 3.901

Analysis with errors—case (b)

Resonances 0.959 3.190 0.978 3.185 1.021 3.173

Res.–antires. 0.887 3.920 0.917 3.918 0.977 3.911

Actual damage location: spring number 1. Damage scenarios D1, D2, D3 as in Table 4. Errors on frequencies f n and

antiresonances f a
n: case (a) errðn ¼ 1Þ ¼ 0:5%, errðn ¼ 2Þ ¼ 1%; case (b) errðn ¼ 1Þ ¼ 1%, errðn ¼ 2Þ ¼ 3%. ErrðnÞ ¼

1% means that the frequency value used in the identification procedure is f exact
n ð1þ 0:01Þ.
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identification are presented in Tables 5 and 6. For the sake of completeness, the results of
identification using variations in the first two frequencies have been also included in Tables 5 and
6. It is possible to note that the predictions of the theory for the mathematical problem are
confirmed. In fact, the damage location problem has two different solutions corresponding to the
first and third floor, the first and fourth floor, respectively when the first two frequencies and the
first frequency and first antiresonance are used as data (see Fig. 3).
The deviations from the exact severity of the damage are negligible for the cases considered.

Finally, as in the previous example, errors in the data are amplified strongly when antiresonance
measurements are used in identification.

4.3. Example 3

In this example the diagnostic technique is applied to spring-mass systems which represent a
discretization of continuous axially vibrating bars. The discrete system is regarded as consisting of
N lumped rigid masses m ¼ rDL concentrated at N points equally distributed along the beam
axis, where r is the linear mass density of the bar and DL ¼ L=ðN � 1Þ is the distance between two
consecutive masses. The segment of bar between the lumped masses is assumed to be massless and
is modelled as a linear elastic spring of stiffness K ¼ EA=DL, where EA is the axial stiffness of the
rod. The experimental models consisted of uniform steel bars under free–free boundary
conditions. Every specimen was damaged by saw-cutting the transversal cross-section. The width
of each crack was equal to 1.5mm and, because of the small level of the excitation, during the
dynamic tests each crack remains always open. The proposed diagnostic procedure was tested on
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Table 6

Determination of the damage severity by using the first two frequencies and first frequency-first antiresonance of the

point frf HNN ð
ffiffiffi
l
p
Þ (Eq. (26))

Data Damage D1 Damage D2 Damage D3

s1N s2N s1N s2N s1N s2N

Analysis without errors

Resonances 0.95 0.90 0.89 0.80 0.77 0.57

Res.–antires. 0.95 0.84 0.89 0.67 0.77 0.29

Analysis with errors—case (a)

Resonances 0.95 0.90 0.89 0.80 0.77 0.57

Res.–antires. 0.95 0.84 0.89 0.67 0.77 0.29

Analysis with errors—case (b)

Resonances 0.95 0.90 0.89 0.80 0.77 0.56

Res.–antires. 0.95 0.84 0.89 0.66 0.77 0.28

Actual damage severity: kdam
1 =kundam

1 ¼ 0:95; 0:90; 0:80 for damages D1, D2, D3, respectively. Errors on frequencies f n

and antiresonances f a
n: case (a) errðn ¼ 1Þ ¼ 0:5%, errðn ¼ 2Þ ¼ 1%; case (b) errðn ¼ 1Þ ¼ 1%, errðn ¼ 2Þ ¼ 3%.

ErrðnÞ ¼ 1% means that the frequency value used in the identification procedure is f exact
n ð1þ 0:01Þ.
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several cracked steel beams, with a double T cross-section or with solid cross-section. In
particular, the following analysis will concern with the steel rod of square solid cross-section
shown in Fig. 5. The results obtained for this specimen are representative of the experimental and
theoretical questions arisen in the course of damage identification.
By using an impulsive dynamic technique, the first lower natural frequencies of the undamaged

bar and of the bar under a series of three damage configurations (D1, D2 and D3, see Fig. 5) were
determined. The rod was suspended by two steel wire ropes to simulate free–free boundary
conditions. The excitation was introduced at one end by means of an impulse force hammer, while
the axial response was measured by a piezoelectric accelerometer fixed in the center of an end
cross-section of the rod. Vibration signals were acquired by a dynamic analyzer and then worked
out in the frequency domain to measure the relevant frequency response term (inertance). The
well-separated vibration modes and the very small damping allowed us to identify the natural
frequencies by means of the single mode technique, see Ref. [19] (Section 5, Second Experiment)
for a complete account of the experiment. The damage configurations were obtained by
introducing a notch of increasing depth at 1.00m from one end. Table 7 compares the
experimental natural frequencies and their corresponding analytical estimates for the continuous
and discrete model of the undamaged rod. The discrete model of the rod has N ¼ 40 dof and the
real damage is located in correspondence of the 14 spring, between the 14 and 15 dof. The
analytical model turns out to be extremely accurate for all the configurations under investigation
and the percentage discrepancy between the measured and the analytical values of the first lower
natural frequencies is less than 0:5%. The severity and the location of the damage have been
achieved by applying formulas (19) and (20).
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650

Fig. 5. Free–free axially vibrating beam with a single crack: damaged configurations and discrete model. Lengths

in mm.

Table 7

First lower experimental frequencies of the rod

Mode number Undamaged Damage D1 Damage D2 Damage D3

Exper. 40 dof system

1 882.25 882.00 881.50 879.30 831.00

2 1764.60 1762.70 1763.30 1759.00 1679.50

3 2645.80 2640.60 2644.00 2647.00 2646.50

4 3530.30 3514.50 3526.80 3516.50 3306.00

Undamaged configuration: axial stiffness EA ¼ 9:95� 107 N, linear mass density r ¼ 3:735 kg=m, length L ¼ 2:925m;

discrete model: N ¼ 40 dof, m ¼ 0:273kg, k ¼ 1:363� 109 N=m. Crack location: s ¼ 1:000m from the left end.

Damage scenarios: D1, D2, D3, see Fig. 4. Frequency values in Hz.
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The results of the identification are summed up in Table 8. For the sake of completeness, the
estimated interval of possible location of the crack is included. With reference to the localization
of the cracked cross-section, the accuracy of the method proves to be satisfactory in all the cases
tested. Concerning the estimation of the damage severity, the diagnostic procedure gives
increasing values of the stiffness reduction for damage configuration D1, D2 and D3, respectively.

4.4. Example 4

This last example concerns with beam-like discrete systems which are used to discretize
continuous beams in bending vibrations. In particular, attention is focussed on a continuous steel
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Table 8

Damage identification by using the first two frequencies (Eqs. (19) and (20)) for the rod of Fig. 5. Actual crack location:

s ¼ 1:000m from the left end

Damage Identified damaged

spring number

Damage location (m) Damage severity

kundam
� kdam

kundam
100From To

D1 14 0.951 1.024 98.9

26 1.828 1.901

D2 14 0.951 1.024 95.6

26 1.828 1.901

D3 14 0.951 1.024 29.0

26 1.828 1.901

Damage D1

80

1
1

Damage D2

2
210

Damage D4Damage D3

3
3

4
4

crack location

(a)

input
force hammer

output
accelerometer

445

1208

241,6

(b)

Fig. 6. Free–free bending vibrating beam with a single crack: damaged configurations and discrete model. Lengths

in mm.
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beam, with rectangular solid cross-section, under free–free boundary conditions (see Fig. 6). By
adopting an experimental technique similar to that of Example 3, the undamaged beam and four
damaged configurations D1–D4 were studied, see Ref. [16] for more details on the dynamic
experiments. Damage was obtained by introducing a symmetrical saw-cut of depth 1, 2, 3, 4mm
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for damage configurations D1–D4, respectively, at the cross-section 0.445m far from the left end.
The beam was excited transversally at the left end by means of a force hammer and the transversal
response at the same end was acquired by a piezoelectric accelerometer. Table 9 shows the
measured and analytical values for the first four lower modes of the continuous model of the
beam. The discrete model was obtained by concentrating the mass of the continuous beam in
N ¼ 50 points equally distributed along the beam axis, e.g. m ¼ rDL, where r is the linear
mass density of the bar and DL ¼ L=N is the distance between two consecutive masses. The
segment of bar between the lumped masses is assumed to be rigid and massless. The elastic
compliance of the continuous beam is lumped at the joints connecting two consecutive segments
and it is modelled as a linear elastic rotational spring of stiffness K ¼ EI=DL, where EI is the
bending stiffness of the beam. The discrete model is very accurate in the frequency range
considered (see Table 9).
Table 9

First lower experimental frequencies of the beam

Mode number Undamaged Damage D1 Damage D2 Damage D3 Damage D4

Exper. 50 dof system

1 36.60 37.36 36.50 36.20 35.40 32.20

2 100.80 102.89 100.70 100.10 98.40 92.90

3 197.70 201.39 197.70 197.60 197.50 197.30

4 326.80 332.16 326.40 324.00 317.90 298.80

Undamaged configuration: bending stiffness EI ¼ 1477Nm2, linear mass density r ¼ 6:3 kg=m, length L ¼ 1:208m;

discrete model: N ¼ 50 dof, m ¼ 0:1522 kg, k ¼ 61134N=m. Crack location: s ¼ 0:445m from the left end. Damage

scenarios: D1, D2, D3, D4, see Fig. 6. Frequency values in Hz.

Table 10

Damage identification by using the first two frequencies

Damage Identified damaged spring number Damage location (m) Damage severity

kundam
� kdam

kundam
100From To

D1 20 0.459 0.483 98.6

29 0.676 0.701

D2 19 0.435 0.459 94.0

30 0.701 0.725

D3 18 0.411 0.435 81.5

31 0.725 0.749

D4 19 0.435 0.459 36.8

30 0.701 0.725

Actual crack location: s ¼ 0:445m from the left end.
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The results of identification are reported in Table 10. The crack location in the discrete model is
determined using the variations of the first and second frequencies and solving numerically with
respect to the damage location an equation analogous to Eq. (16). The analysis shows that the
above data is sufficient to localize the damage, except for symmetrical positions. Concerning the
determination of crack location, the results are in good agreement with theoretical expectations
for all the damage scenarios considered. The estimates on the damage severity confirm that
damage progressively increasing from level D1 to level D4.
5. Conclusions

This paper is concerned with the identification of a single defect in a spring-mass or beam-like
discrete system from a knowledge of the damage-induced changes in resonance frequencies and
antiresonance frequencies. In the case of initially uniform discrete systems, it is shown how an
appropriate use of frequencies and antiresonances may be useful for the unique identification of
the damage. Numerical results are in good agreement with the theory when analytical or
experimental data are employed in identification.
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